Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 627
Filtrar
1.
J Biol Chem ; 299(7): 104908, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37307919

RESUMO

Whereas it is known that p53 broadly regulates cell metabolism, the specific activities that mediate this regulation remain partially understood. Here, we identified carnitine o-octanoyltransferase (CROT) as a p53 transactivation target that is upregulated by cellular stresses in a p53-dependent manner. CROT is a peroxisomal enzyme catalyzing very long-chain fatty acids conversion to medium chain fatty acids that can be absorbed by mitochondria during ß-oxidation. p53 induces CROT transcription through binding to consensus response elements in the 5'-UTR of CROT mRNA. Overexpression of WT but not enzymatically inactive mutant CROT promotes mitochondrial oxidative respiration, while downregulation of CROT inhibits mitochondrial oxidative respiration. Nutrient depletion induces p53-dependent CROT expression that facilitates cell growth and survival; in contrast, cells deficient in CROT have blunted cell growth and reduced survival during nutrient depletion. Together, these data are consistent with a model where p53-regulated CROT expression allows cells to be more efficiently utilizing stored very long-chain fatty acids to survive nutrient depletion stresses.


Assuntos
Carnitina Aciltransferases , Sobrevivência Celular , Nutrientes , Proteína Supressora de Tumor p53 , Regiões 5' não Traduzidas/genética , Carnitina/metabolismo , Carnitina Aciltransferases/genética , Carnitina Aciltransferases/metabolismo , Processos de Crescimento Celular , Respiração Celular , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Mutação , Nutrientes/deficiência , Nutrientes/metabolismo , Oxirredução , Peroxissomos/enzimologia , Elementos de Resposta/genética , Estresse Fisiológico , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo
2.
Nature ; 607(7918): 374-380, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768507

RESUMO

Peroxisomes are ubiquitous organelles that house various metabolic reactions and are essential for human health1-4. Luminal peroxisomal proteins are imported from the cytosol by mobile receptors, which then recycle back to the cytosol by a poorly understood process1-4. Recycling requires receptor modification by a membrane-embedded ubiquitin ligase complex comprising three RING finger domain-containing proteins (Pex2, Pex10 and Pex12)5,6. Here we report a cryo-electron microscopy structure of the ligase complex, which together with biochemical and in vivo experiments reveals its function as a retrotranslocation channel for peroxisomal import receptors. Each subunit of the complex contributes five transmembrane segments that co-assemble into an open channel. The three ring finger domains form a cytosolic tower, with ring finger 2 (RF2) positioned above the channel pore. We propose that the N terminus of a recycling receptor is inserted from the peroxisomal lumen into the pore and monoubiquitylated by RF2 to enable extraction into the cytosol. If recycling is compromised, receptors are polyubiquitylated by the concerted action of RF10 and RF12 and degraded. This polyubiquitylation pathway also maintains the homeostasis of other peroxisomal import factors. Our results clarify a crucial step during peroxisomal protein import and reveal why mutations in the ligase complex cause human disease.


Assuntos
Microscopia Crioeletrônica , Peroxissomos , Complexos Ubiquitina-Proteína Ligase , Citosol/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Peroxinas/química , Peroxinas/metabolismo , Peroxinas/ultraestrutura , Fator 2 da Biogênese de Peroxissomos/química , Fator 2 da Biogênese de Peroxissomos/metabolismo , Fator 2 da Biogênese de Peroxissomos/ultraestrutura , Peroxissomos/enzimologia , Peroxissomos/ultraestrutura , Poliubiquitina , Transporte Proteico , Domínios RING Finger , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/ultraestrutura , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/metabolismo , Complexos Ubiquitina-Proteína Ligase/ultraestrutura
3.
Nat Commun ; 12(1): 5243, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475406

RESUMO

Peroxisome, a special cytoplasmic organelle, possesses one or more kinds of oxidases for hydrogen peroxide (H2O2) production and catalase for H2O2 degradation, which serves as an intracellular H2O2 regulator to degrade toxic peroxides to water. Inspired by this biochemical pathway, we demonstrate the reactive oxygen species (ROS) induced tumor therapy by integrating lactate oxidase (LOx) and catalase (CAT) into Fe3O4 nanoparticle/indocyanine green (ICG) co-loaded hybrid nanogels (designated as FIGs-LC). Based on the O2 redistribution and H2O2 activation by cascading LOx and CAT catalytic metabolic regulation, hydroxyl radical (·OH) and singlet oxygen (1O2) production can be modulated for glutathione (GSH)-activated chemodynamic therapy (CDT) and NIR-triggered photodynamic therapy (PDT), by manipulating the ratio of LOx and CAT to catalyze endogenous lactate to produce H2O2 and further cascade decomposing H2O2 into O2. The regulation reactions of FIGs-LC significantly elevate the intracellular ROS level and cause fatal damage to cancer cells inducing the effective inhibition of tumor growth. Such enzyme complex loaded hybrid nanogel present potential for biomedical ROS regulation, especially for the tumors with different redox state, size, and subcutaneous depth.


Assuntos
Antineoplásicos/farmacologia , Nanogéis/química , Peroxissomos/enzimologia , Fotoquimioterapia/métodos , Animais , Antineoplásicos/química , Catalase/química , Catalase/metabolismo , Catálise , Linhagem Celular Tumoral , Óxido Ferroso-Férrico/química , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Verde de Indocianina/química , Camundongos , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/efeitos dos fármacos
4.
Cells ; 10(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34440712

RESUMO

Fatty acids are important biological components, yet the metabolism of fatty acids in microalgae is not clearly understood. Previous studies found that Chlamydomonas reinhardtii, the model microalga, incorporates exogenously added fatty acids but metabolizes them differently from animals and yeast. Furthermore, a recent metabolic flux analysis found that the majority of lipid turnover in C. reinhardtii is the recycling of acyl chains from and to membranes, rather than ß -oxidation. This indicates that for the alga, the maintenance of existing acyl chains may be more valuable than their breakdown for energy. To gain cell-biological knowledge of fatty acid metabolism in C. reinhardtii, we conducted microscopy analysis with fluorescent probes. First, we found that CAT1 (catalase isoform 1) is in the peroxisomes while CAT2 (catalase isoform 2) is localized in the endoplasmic reticulum, indicating the alga is capable of detoxifying hydrogen peroxide that would be produced during ß-oxidation in the peroxisomes. Second, we compared the localization of exogenously added FL-C16 (fluorescently labelled palmitic acid) with fluorescently marked endosomes, mitochondria, peroxisomes, lysosomes, and lipid droplets. We found that exogenously added FL-C16 are incorporated and compartmentalized via a non-endocytic route within 10 min. However, the fluorescence signals from FL-C16 did not colocalize with any marked organelles, including peroxisomes. During triacylglycerol accumulation, the fluorescence signals from FL-C16 were localized in lipid droplets. These results support the idea that membrane turnover is favored over ß-oxidation in C. reinhardtii. The knowledge gained in these analyses would aid further studies of the fatty acid metabolism.


Assuntos
Catalase/metabolismo , Membrana Celular/enzimologia , Chlamydomonas reinhardtii/enzimologia , Retículo Endoplasmático/enzimologia , Gotículas Lipídicas/metabolismo , Ácido Palmítico/metabolismo , Peroxissomos/enzimologia , Proteínas de Plantas/metabolismo , Catalase/genética , Membrana Celular/genética , Chlamydomonas reinhardtii/genética , Peróxido de Hidrogênio/metabolismo , Isoenzimas , Microscopia de Fluorescência , Oxirredução , Proteínas de Plantas/genética , Fatores de Tempo
5.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360635

RESUMO

Salivary gland cancers are rare but aggressive tumors that have poor prognosis and lack effective cure. Of those, parotid tumors constitute the majority. Functioning as metabolic machinery contributing to cellular redox balance, peroxisomes have emerged as crucial players in tumorigenesis. Studies on murine and human cells have examined the role of peroxisomes in carcinogenesis with conflicting results. These studies either examined the consequences of altered peroxisomal proliferators or compared their expression in healthy and neoplastic tissues. None, however, examined such differences exclusively in human parotid tissue or extended comparison to peroxisomal proteins and their associated gene expressions. Therefore, we examined differences in peroxisomal dynamics in parotid tumors of different morphologies. Using immunofluorescence and quantitative PCR, we compared the expression levels of key peroxisomal enzymes and proliferators in healthy and neoplastic parotid tissue samples. Three parotid tumor subtypes were examined: pleomorphic adenoma, mucoepidermoid carcinoma and acinic cell carcinoma. We observed higher expression of peroxisomal matrix proteins in neoplastic samples with exceptional down regulation of certain enzymes; however, the degree of expression varied between tumor subtypes. Our findings confirm previous experimental results on other organ tissues and suggest peroxisomes as possible therapeutic targets or markers in all or certain subtypes of parotid neoplasms.


Assuntos
Adenoma Pleomorfo/enzimologia , Carcinoma de Células Acinares/enzimologia , Carcinoma Mucoepidermoide/enzimologia , Neoplasias Parotídeas/enzimologia , Peroxissomos/enzimologia , Adenoma Pleomorfo/patologia , Carcinoma de Células Acinares/patologia , Carcinoma Mucoepidermoide/patologia , Estudos de Casos e Controles , Humanos , Proteínas de Neoplasias/metabolismo , Glândula Parótida/patologia , Neoplasias Parotídeas/patologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo
6.
FEBS J ; 288(19): 5768-5780, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33843134

RESUMO

Mycophenolic acid (MPA) is a fungal natural product and first-line immunosuppressive drug for organ transplantations and autoimmune diseases. In the compartmentalized biosynthesis of MPA, the acyl-coenzyme A (CoA) hydrolase MpaH' located in peroxisomes catalyzes the highly specific hydrolysis of MPA-CoA to produce the final product MPA. The strict substrate specificity of MpaH' not only averts undesired hydrolysis of various cellular acyl-CoAs, but also prevents MPA-CoA from further peroxisomal ß-oxidation catabolism. To elucidate the structural basis for this important property, in this study, we solve the crystal structures of the substrate-free form of MpaH' and the MpaH'S139A mutant in complex with the product MPA. The MpaH' structure reveals a canonical α/ß-hydrolase fold with an unusually large cap domain and a rare location of the acidic residue D163 of catalytic triad after strand ß6. MpaH' also forms an atypical dimer with the unique C-terminal helices α13 and α14 arming the cap domain of the other protomer and indirectly participating in the substrate binding. With these characteristics, we propose that MpaH' and its homologs form a new subfamily of α/ß hydrolase fold protein. The crystal structure of MpaH'S139A /MPA complex and the modeled structure of MpaH'/MPA-CoA, together with the structure-guided mutagenesis analysis and isothermal titration calorimetry (ITC) measurements, provide important mechanistic insights into the high substrate specificity of MpaH'.


Assuntos
Acil Coenzima A/química , Hidrolases/ultraestrutura , Ácido Micofenólico/metabolismo , Peroxissomos/ultraestrutura , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Hidrolases/química , Hidrolases/genética , Ácido Micofenólico/química , Penicillium/genética , Penicillium/ultraestrutura , Peroxissomos/enzimologia , Estrutura Secundária de Proteína/genética , Especificidade por Substrato/genética
7.
Mol Biotechnol ; 63(6): 544-555, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33786739

RESUMO

Candida tropicalis can metabolize alkanes or fatty acids to produce long-chain dicarboxylic acids (DCAs). Fatty acid transporters located on the cell or peroxisome membrane may play an important role in this process. Using amino acid sequence homologous alignment, two putative proteins, CtFat1p and CtPxa1p, located on the cell and peroxisome membrane were found, respectively. Moreover, single- and double-knockout homologous recombination technology was used to study ctfat1p and ctpxa1p gene effects on DCA synthesis. In comparison to the wild-type strain, long-chain DCA yield decreased by 65.14%, 88.38% and 56.19% after single and double-copy knockout of ctfat1p genes and double-copy knockout of ctpxa1p genes, respectively, indicating that the knockout of ctfat1p and ctpxa1p genes had a significant effect on the conversion of oils and fats into long-chain DCAs by C. tropicalis. However, the yield of long-chain DCAs increased by 21.90% after single-knockout of the ctpxa1p gene, indicating that the single-knockout of the ctpxa1p gene may reduce fatty acid transport to peroxisome for further oxidation. Moreover, to improve the intracellular transport rate of fatty acids, ctfat1p copy number increased, increasing DCA yield by 30.10%. These results may provide useful information for enhancing the production of long-chain DCAs by C. tropicalis.


Assuntos
Alcanos/química , Candida tropicalis/química , Ácidos Graxos/química , Engenharia de Proteínas , Alcanos/metabolismo , Sequência de Aminoácidos/genética , Candida tropicalis/enzimologia , Candida tropicalis/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Fermentação , Redes e Vias Metabólicas/genética , Oxirredução , Peroxissomos/enzimologia , Peroxissomos/genética , Engenharia de Proteínas/métodos , Alinhamento de Sequência
8.
Am J Physiol Heart Circ Physiol ; 320(5): H1813-H1821, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33666503

RESUMO

Although peroxisomes have been extensively studied in other cell types, their presence and function have gone virtually unexamined in cardiac myocytes. Here, in neonatal rat ventricular myocytes (NRVM) we showed that several known peroxisomal proteins co-localize to punctate structures with a morphology typical of peroxisomes. Surprisingly, we found that the peroxisomal protein, fatty acyl-CoA reductase 1 (FAR1), was upregulated by pharmacological and pathophysiological ER stress induced by tunicamycin (TM) and simulated ischemia-reperfusion (sI/R), respectively. Moreover, FAR1 induction in NRVM was mediated by the ER stress sensor, activating transcription factor 6 (ATF6). Functionally, FAR1 knockdown reduced myocyte death during oxidative stress induced by either sI/R or hydrogen peroxide (H2O2). Thus, Far1 is an ER stress-inducible gene, which encodes a protein that localizes to peroxisomes of cardiac myocytes, where it reduces myocyte viability during oxidative stress. Since FAR1 is critical for plasmalogen synthesis, these results imply that plasmalogens may exert maladaptive effects on the viability of myocytes exposed to oxidative stress.NEW & NOTEWORTHY The peroxisomal enzyme, FAR1, was shown to be an ER stress- and ATF6-inducible protein that localizes to peroxisomes in cardiac myocytes. FAR1 decreases myocyte viability during oxidative stress.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Aldeído Oxirredutases/biossíntese , Estresse do Retículo Endoplasmático , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , Peroxissomos/enzimologia , Fator 6 Ativador da Transcrição/genética , Aldeído Oxirredutases/genética , Animais , Animais Recém-Nascidos , Hipóxia Celular , Sobrevivência Celular , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Indução Enzimática , Peróxido de Hidrogênio/toxicidade , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Estresse Oxidativo , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Ratos , Tunicamicina/toxicidade
9.
Small GTPases ; 12(5-6): 372-398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33183150

RESUMO

Mitochondria and peroxisomes are highly dynamic, multifunctional organelles. Both perform key roles for cellular physiology and homoeostasis by mediating bioenergetics, biosynthesis, and/or signalling. To support cellular function, they must be properly distributed, of proper size, and be able to interact with other organelles. Accumulating evidence suggests that the small atypical GTPase Miro provides a central signalling node to coordinate mitochondrial as well as peroxisomal dynamics. In this review, I summarize our current understanding of Miro-dependent functions and molecular mechanisms underlying the proper distribution, size and function of mitochondria and peroxisomes.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Homeostase , Mitocôndrias/fisiologia , Dinâmica Mitocondrial , Peroxissomos/fisiologia , Animais , Humanos , Mitocôndrias/enzimologia , Peroxissomos/enzimologia , Transdução de Sinais
10.
PLoS One ; 15(12): e0242445, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33301490

RESUMO

Acyl-CoA dehydrogenase 10 (Acad10)-deficient mice develop impaired glucose tolerance, peripheral insulin resistance, and abnormal weight gain. In addition, they exhibit biochemical features of deficiencies of fatty acid oxidation, such as accumulation of metabolites consistent with abnormal mitochondrial energy metabolism and fasting induced rhabdomyolysis. ACAD10 has significant expression in mouse brain, unlike other acyl-CoA dehydrogenases (ACADs) involved in fatty acid oxidation. The presence of ACAD10 in human tissues was determined using immunohistochemical staining. To characterize the effect of ACAD10 deficiency on the brain, micro-MRI and neurobehavioral evaluations were performed. Acad10-deficient mouse behavior was examined using open field testing and DigiGait analysis for changes in general activity as well as indices of gait, respectively. ACAD10 protein was shown to colocalize to mitochondria and peroxisomes in lung, muscle, kidney, and pancreas human tissue. Acad10-deficient mice demonstrated subtle behavioral abnormalities, which included reduced activity and increased time in the arena perimeter in the open field test. Mutant animals exhibited brake and propulsion metrics similar to those of control animals, which indicates normal balance, stability of gait, and the absence of significant motor impairment. The lack of evidence for motor impairment combined with avoidance of the center of an open field arena and reduced vertical and horizontal exploration are consistent with a phenotype characterized by elevated anxiety. These results implicate ACAD10 function in normal mouse behavior, which suggests a novel role for ACAD10 in brain metabolism.


Assuntos
Acil-CoA Desidrogenase/genética , Ansiedade/genética , Encéfalo/enzimologia , Metabolismo Energético/genética , Mitocôndrias/enzimologia , Acil-CoA Desidrogenase/deficiência , Acil-CoA Desidrogenase/metabolismo , Animais , Ansiedade/enzimologia , Ansiedade/fisiopatologia , Comportamento Animal , Encéfalo/diagnóstico por imagem , Carnitina/análogos & derivados , Carnitina/metabolismo , Marcha/fisiologia , Humanos , Rim/enzimologia , Fígado/enzimologia , Pulmão/enzimologia , Imageamento por Ressonância Magnética , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Músculo Esquelético/enzimologia , Pâncreas/enzimologia , Peroxissomos/enzimologia
11.
Plant J ; 104(6): 1472-1490, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031578

RESUMO

Benzoic acid-derived compounds, such as polyprenylated benzophenones and xanthones, attract the interest of scientists due to challenging chemical structures and diverse biological activities. The genus Hypericum is of high medicinal value, as exemplified by H. perforatum. It is rich in benzophenone and xanthone derivatives, the biosynthesis of which requires the catalytic activity of benzoate-coenzyme A (benzoate-CoA) ligase (BZL), which activates benzoic acid to benzoyl-CoA. Despite remarkable research so far done on benzoic acid biosynthesis in planta, all previous structural studies of BZL genes and proteins are exclusively related to benzoate-degrading microorganisms. Here, a transcript for a plant acyl-activating enzyme (AAE) was cloned from xanthone-producing Hypericum calycinum cell cultures using transcriptomic resources. An increase in the HcAAE1 transcript level preceded xanthone accumulation after elicitor treatment, as previously observed with other pathway-related genes. Subcellular localization of reporter fusions revealed the dual localization of HcAAE1 to cytosol and peroxisomes owing to a type 2 peroxisomal targeting signal. This result suggests the generation of benzoyl-CoA in Hypericum by the CoA-dependent non-ß-oxidative route. A luciferase-based substrate specificity assay and the kinetic characterization indicated that HcAAE1 exhibits promiscuous substrate preference, with benzoic acid being the sole aromatic substrate accepted. Unlike 4-coumarate-CoA ligase and cinnamate-CoA ligase enzymes, HcAAE1 did not accept 4-coumaric and cinnamic acids, respectively. The substrate preference was corroborated by in silico modeling, which indicated valid docking of both benzoic acid and its adenosine monophosphate intermediate in the HcAAE1/BZL active site cavity.


Assuntos
Acil Coenzima A/metabolismo , Coenzima A Ligases/metabolismo , Hypericum/metabolismo , Proteínas de Plantas/metabolismo , Xantonas/metabolismo , Clonagem Molecular , Coenzima A Ligases/genética , Citosol/enzimologia , Hypericum/enzimologia , Redes e Vias Metabólicas , Simulação de Acoplamento Molecular , Peroxissomos/enzimologia , Filogenia , Proteínas de Plantas/genética
12.
Biol Pharm Bull ; 43(9): 1382-1392, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879213

RESUMO

The effects of different dietary fats on hepatic fatty acid oxidation were compared in male ICR mice and Sprague-Dawley rats. Animals were fed diets containing 100 g/kg of either palm oil (saturated fat), safflower oil (rich in linoleic acid), an oil of evening primrose origin (γ-linolenic acid, GLA oil), perilla oil (α-linolenic acid) or fish oil (eicosapentaenoic and doxosahexaenoic acids) for 21 d. GLA, perilla and fish oils, compared with palm and safflower oils, increased the activity of fatty acid oxidation enzymes in both mice and rats, with some exceptions. In mice, GLA and fish oils greatly increased the peroxisomal palmitoyl-CoA oxidation rate, and the activity of acyl-CoA oxidase and enoyl-CoA hydratase to the same degree. The effects were much smaller with perilla oil. In rats, enhancing effects were more notable with fish oil than with GLA and perilla oils, excluding the activity of enoyl-CoA hydratase, and were comparable between GLA and perilla oils. In mice, strong enhancing effects of GLA oil, which were greater than with perilla oil and comparable to those of fish oil, were confirmed on mRNA levels of peroxisomal but not mitochondrial fatty acid oxidation enzymes. In rats, the effects of GLA and perilla oils on mRNA levels of peroxisomal and mitochondrial enzymes were indistinguishable, and lower than those observed with fish oil. Therefore, considerable diversity in the response to dietary polyunsaturated fats, especially the oil rich in γ-linolenic acid and fish oil, of hepatic fatty acid oxidation pathway exists between mice and rats.


Assuntos
Gorduras na Dieta/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ácido gama-Linolênico/administração & dosagem , Acil-CoA Oxidase/metabolismo , Ração Animal , Animais , Enoil-CoA Hidratase/metabolismo , Óleos de Peixe/administração & dosagem , Óleos de Peixe/química , Fígado/citologia , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Oxirredução/efeitos dos fármacos , Peroxissomos/efeitos dos fármacos , Peroxissomos/enzimologia , Óleos de Plantas/administração & dosagem , Óleos de Plantas/química , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
13.
Sci Rep ; 10(1): 10846, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616740

RESUMO

In plants, the shikimate pathway generally occurs in plastids and leads to the biosynthesis of aromatic amino acids. Chorismate synthase (CS) catalyses the last step of the conversion of 5-enolpyruvylshikimate 3-phosphate (EPSP) to chorismate, but the role of CS in the metabolism of higher plants has not been reported. In this study, we found that PhCS, which is encoded by a single-copy gene in petunia (Petunia hybrida), contains N-terminal plastidic transit peptides and peroxisomal targeting signals. Green fluorescent protein (GFP) fusion protein assays revealed that PhCS was localized in chloroplasts and, unexpectedly, in peroxisomes. Petunia plants with reduced PhCS activity were generated through virus-induced gene silencing and further characterized. PhCS silencing resulted in reduced CS activity, severe growth retardation, abnormal flower and leaf development and reduced levels of folate and pigments, including chlorophylls, carotenoids and anthocyanins. A widely targeted metabolomics analysis showed that most primary and secondary metabolites were significantly changed in pTRV2-PhCS-treated corollas. Overall, the results revealed a clear connection between primary and specialized metabolism related to the shikimate pathway in petunia.


Assuntos
Antocianinas/metabolismo , Cloroplastos/enzimologia , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Peroxissomos/enzimologia , Petunia/crescimento & desenvolvimento , Fósforo-Oxigênio Liases/metabolismo , Flores/metabolismo , Petunia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Genome Biol Evol ; 12(10): 1734-1750, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32602891

RESUMO

Peroxisomes perform various metabolic processes that are primarily related to the elimination of reactive oxygen species and oxidative lipid metabolism. These organelles are present in all major eukaryotic lineages, nevertheless, information regarding the presence of peroxisomes in opportunistic parasitic protozoa is scarce and in many cases it is still unknown whether these organisms have peroxisomes at all. Here, we performed ultrastructural, cytochemical, and bioinformatic studies to investigate the presence of peroxisomes in three genera of free-living amoebae from two different taxonomic groups that are known to cause fatal infections in humans. By transmission electron microscopy, round structures with a granular content limited by a single membrane were observed in Acanthamoeba castellanii, Acanthamoeba griffini, Acanthamoeba polyphaga, Acanthamoeba royreba, Balamuthia mandrillaris (Amoebozoa), and Naegleria fowleri (Heterolobosea). Further confirmation for the presence of peroxisomes was obtained by treating trophozoites in situ with diaminobenzidine and hydrogen peroxide, which showed positive reaction products for the presence of catalase. We then performed comparative genomic analyses to identify predicted peroxin homologues in these organisms. Our results demonstrate that a complete set of peroxins-which are essential for peroxisome biogenesis, proliferation, and protein import-are present in all of these amoebae. Likewise, our in silico analyses allowed us to identify a complete set of peroxins in Naegleria lovaniensis and three novel peroxin homologues in Naegleria gruberi. Thus, our results indicate that peroxisomes are present in these three genera of free-living amoebae and that they have a similar peroxin complement despite belonging to different evolutionary lineages.


Assuntos
Acanthamoeba castellanii/ultraestrutura , Balamuthia mandrillaris/ultraestrutura , Peroxinas/genética , Peroxissomos/ultraestrutura , Acanthamoeba castellanii/enzimologia , Acanthamoeba castellanii/genética , Balamuthia mandrillaris/enzimologia , Balamuthia mandrillaris/genética , Catalase/metabolismo , Microscopia Eletrônica de Transmissão , Peroxinas/metabolismo , Peroxissomos/enzimologia , Peroxissomos/genética , Filogenia
15.
Planta ; 251(5): 98, 2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32306103

RESUMO

MAIN CONCLUSION: This work reveals information about new peroxisomal targeting signals type 1 and identifies trehalose-6-phosphate phosphatase I as multitargeted and is implicated in plant development, reproduction, and stress response. A putative, non-canonical peroxisomal targeting signal type 1 (PTS1) Pro-Arg-Met > was identified in the extreme C-terminus of trehalose-6-phosphate phosphatase (TPP)I. TPP catalyzes the final step of trehalose synthesis, and the enzyme was previously characterized to be nuclear only (Krasensky et al. in Antioxid Redox Signal 21(9):1289-1304, 2014). Here we show that the TPPI C-terminal decapeptide ending with Pro-Arg-Met > or Pro-Lys-Met > can indeed function as a PTS1. Upon transient expression in two plant expression systems, the free C- or N-terminal end led to the full-length TPPI targeting to peroxisomes and plastids, respectively. The nucleus and nucleolus targeting of the full-length TPPI was observed in both cases. The homozygous T-DNA insertion line of TPPI showed a pleiotropic phenotype including smaller leaves, shorter roots, delayed flowering, hypersensitivity to salt, and a sucrose dependent seedling development. Our results identify novel PTS1s, and TPPI as a protein multi-targeted to peroxisomes, plastids, nucleus, and nucleolus. Altogether our findings implicate an essential role for TPPI in development, reproduction, and cell signaling.


Assuntos
Arabidopsis/enzimologia , Flores/enzimologia , Sinais de Orientação para Peroxissomos , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Biologia Computacional , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Peroxissomos/enzimologia , Monoéster Fosfórico Hidrolases/genética , Filogenia , Plastídeos/metabolismo , Reprodução
16.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165720, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32057943

RESUMO

Carnitine plays an essential role in mitochondrial fatty acid ß-oxidation as a part of a cycle that transfers long-chain fatty acids across the mitochondrial membrane and involves two carnitine palmitoyltransferases (CPT1 and CPT2). Two distinct carnitine acyltransferases, carnitine octanoyltransferase (COT) and carnitine acetyltransferase (CAT), are peroxisomal enzymes, which indicates that carnitine is not only important for mitochondrial, but also for peroxisomal metabolism. It has been demonstrated that after peroxisomal metabolism, specific intermediates can be exported as acylcarnitines for subsequent and final mitochondrial metabolism. There is also evidence that peroxisomes are able to degrade fatty acids that are typically handled by mitochondria possibly after transport as acylcarnitines. Here we review the biochemistry and physiological functions of metabolite exchange between peroxisomes and mitochondria with a special focus on acylcarnitines.


Assuntos
Carnitina Aciltransferases/metabolismo , Carnitina/análogos & derivados , Ácidos Graxos/metabolismo , Mitocôndrias/enzimologia , Peroxissomos/enzimologia , Carnitina/metabolismo
17.
J Exp Bot ; 71(3): 823-836, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31641750

RESUMO

Recent work revealed that PGD2, an Arabidopsis 6-phosphogluconate dehydrogenase (6-PGD) catalysing the third step of the oxidative pentose-phosphate pathway (OPPP) in peroxisomes, is essential during fertilization. Earlier studies on the second step, catalysed by PGL3, a dually targeted Arabidopsis 6-phosphogluconolactonase (6-PGL), reported the importance of OPPP reactions in plastids but their irrelevance in peroxisomes. Assuming redundancy of 6-PGL activity in peroxisomes, we examined the sequences of other higher plant enzymes. In tomato, there exist two 6-PGL isoforms with the strong PTS1 motif SKL. However, their analysis revealed problems regarding peroxisomal targeting: reporter-PGL detection in peroxisomes required construct modification, which was also applied to the Arabidopsis isoforms. The relative contribution of PGL3 versus PGL5 during fertilization was assessed by mutant crosses. Reduced transmission ratios were found for pgl3-1 (T-DNA-eliminated PTS1) and also for knock-out allele pgl5-2. The prominent role of PGL3 showed as compromised growth of pgl3-1 seedlings on sucrose and higher activity of mutant PGL3-1 versus PGL5 using purified recombinant proteins. Evidence for PTS1-independent uptake was found for PGL3-1 and other Arabidopsis PGL isoforms, indicating that peroxisome import may be supported by a piggybacking mechanism. Thus, multiple redundancy at the level of the second OPPP step in peroxisomes explains the occurrence of pgl3-1 mutant plants.


Assuntos
Arabidopsis/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Peroxissomos/enzimologia , Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Isoenzimas/metabolismo , Solanum lycopersicum/enzimologia
18.
Adv Exp Med Biol ; 1299: 55-70, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33417207

RESUMO

Peroxisomes play a central role in metabolism as exemplified by the fact that many genetic disorders in humans have been identified through the years in which there is an impairment in one or more of these peroxisomal functions, in most cases associated with severe clinical signs and symptoms. One of the key functions of peroxisomes is the ß-oxidation of fatty acids which differs from the oxidation of fatty acids in mitochondria in many respects which includes the different substrate specificities of the two organelles. Whereas mitochondria are the main site of oxidation of medium-and long-chain fatty acids, peroxisomes catalyse the ß-oxidation of a distinct set of fatty acids, including very-long-chain fatty acids, pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid. Peroxisomes require the functional alliance with multiple subcellular organelles to fulfil their role in metabolism. Indeed, peroxisomes require the functional interaction with lysosomes, lipid droplets and the endoplasmic reticulum, since these organelles provide the substrates oxidized in peroxisomes. On the other hand, since peroxisomes lack a citric acid cycle as well as respiratory chain, oxidation of the end-products of peroxisomal fatty acid oxidation notably acetyl-CoA, and different medium-chain acyl-CoAs, to CO2 and H2O can only occur in mitochondria. The same is true for the reoxidation of NADH back to NAD+. There is increasing evidence that these interactions between organelles are mediated by tethering proteins which bring organelles together in order to allow effective exchange of metabolites. It is the purpose of this review to describe the current state of knowledge about the role of peroxisomes in fatty acid oxidation, the transport of metabolites across the peroxisomal membrane, its functional interaction with other subcellular organelles and the disorders of peroxisomal fatty acid ß-oxidation identified so far in humans.


Assuntos
Ácidos Graxos/metabolismo , Transtornos Peroxissômicos/metabolismo , Peroxissomos/metabolismo , Humanos , Metabolismo dos Lipídeos , Oxirredução , Transtornos Peroxissômicos/enzimologia , Peroxissomos/enzimologia
19.
Adv Exp Med Biol ; 1299: 161-167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33417214

RESUMO

This paper reports that the human peroxisomal 3-ketoacyl-CoA thiolase expression shows three transcripts: Tr1 (1705 bp), Tr2 (1375 bp) and Tr3 (1782 bp). Their highest expression is observed in the human liver and at a lesser extent in hepatic-derived HepG2 cells. The intestine and blood and endothelial cells show lower expression. The lowest expression is found in adipocytes. The transcript Tr3 appears to be the most abundant. So far, no data have been published regarding the regulation of the human peroxisomal thiolase. After cloning a fragment of the 5' region involved in the regulation of the human thiolase gene, the effects of different treatments have been studied on the thiolase expression in the hepatoma HepG2 human cell line. Biocomputing analysis indicates that (i) a GRE (glucocorticoid response element) is located at -650 bp upstream of the transcription initiation site; (ii) a C/EBPα (CCAAT/enhancer-binding protein) binding site is located at - 1000 bp upstream of the transcription initiation site - and (iii) there is no putative PPRE (peroxisome proliferator-activated receptor response element). In the human HepG2 cells, thiolase expression is upregulated by glucose and downregulated by insulin and sterols, while dexamethasone and fatty acids have no effect. The ciprofibrate, a peroxisome proliferator, leads only to a weak stimulation of the mRNA expression as compared to thiolase B expression in the rat liver.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Peroxissomos/enzimologia , Animais , Glucose/farmacologia , Humanos , Insulina/farmacologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Especificidade de Órgãos , Esteróis/farmacologia , Distribuição Tecidual
20.
Int J Mol Sci ; 20(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817290

RESUMO

There are three human enzymes with HMG-CoA lyase activity that are able to synthesize ketone bodies in different subcellular compartments. The mitochondrial HMG-CoA lyase was the first to be described, and catalyzes the cleavage of 3-hydroxy-3-methylglutaryl CoA to acetoacetate and acetyl-CoA, the common final step in ketogenesis and leucine catabolism. This protein is mainly expressed in the liver and its function is metabolic, since it produces ketone bodies as energetic fuels when glucose levels are low. Another isoform is encoded by the same gene for the mitochondrial HMG-CoA lyase (HMGCL), but it is located in peroxisomes. The last HMG-CoA lyase to be described is encoded by a different gene, HMGCLL1, and is located in the cytosolic side of the endoplasmic reticulum membrane. Some activity assays and tissue distribution of this enzyme have shown the brain and lung as key tissues for studying its function. Although the roles of the peroxisomal and cytosolic HMG-CoA lyases remain unknown, recent studies highlight the role of ketone bodies in metabolic remodeling, homeostasis, and signaling, providing new insights into the molecular and cellular function of these enzymes.


Assuntos
Citosol/enzimologia , Mitocôndrias/enzimologia , Oxo-Ácido-Liases/metabolismo , Peroxissomos/enzimologia , Metabolismo Energético , Evolução Molecular , Humanos , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Corpos Cetônicos/metabolismo , Fígado/enzimologia , Oxo-Ácido-Liases/classificação , Oxo-Ácido-Liases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...